Rice Protection from Invertebrate Pests

Larry Godfrey Dept. of Entomology and Nematology, UC-Davis

Godfrey Laboratory: Kevin Goding, Mohammad-Amir

Aghaee, Joanna Bloese + three student workers

Visiting Scientist: Mahmoud El-Habashy

RES: Ray Stogsdill

Others: Amy Bell, Jhalendra Rijal, Randall Cass

Cultural Controls

- Well-adapted varieties
- Weed management on levees
- Planting dates
- Winter flooding

Biological Control

- Parasitoids for armyworms, rice leafminer
- Predators that feed on mosquito larvae

Regulatory Controls

Actions by state and federal agencies to keep pests out of California

Host Plant Resistance

Not well-developed but some help

Pheromones

None

Insecticides

at seeding to 3leaf stage – rice leafminer, rice water weevil

July to August - armyworms

at seeding – seed midge, tadpole shrimp, crayfish

Panicle emergence
to grain fill – stink
bugs

at seeding – seed midge, tadpole shrimp, crayfish

		Product per	
<u>Product</u>	Rate (lbs. AI/A)	A (fl. oz.)	Timing
1. Untreated-no TPS			
2. Belay 2.13 SC		4.5	Preflood
3. Coragen	0.1	2.46	Preflood
4. Belay 2.13 SC		4.5	early post-flood**
5. Coragen	0.1	2.46	early post-flood**
6. Dimilin 2L		8.0	early post-flood**
7. Untreated with TPS			
8. Warrior II	0.04	2.56	early post-flood**
9. Warrior II	0.04	2.56	Preflood
10. Warrior II	0.04	2.56	Preflood and early post-flood**
11. A17469; A17960			seed treatment – at planting
12. Copper Sulfate	10 lbs./A		early post-flood**

Tadpole Shrimp

at seeding to 3-leaf stage – rice water weevil

at seeding to 3-leaf stage – rice water weevil

RWW management – "insecticides"

- ring study
- small plot study
- greenhouse biological insecticide study
- silicon augmentation
- impact of treatments on mosquito management

RWW management – winter flooding

Rice variety response to RWW

- multiple variety comparison
- detailed M-202 and M-206 study

RWW genetics

at seeding to 3-leaf
stage - rice water weevil

Product	Rate (lbs. AI/A)	Product per A (fl. oz.)	Timing
1. Dimilin 2L	0.125	8	2-3 leaf
2. Untreated			
3. Warrior II	0.04	2.56	PF
4. Warrior II	0.04	2.56	1-2 leaf
5. Warrior II	0.04	2.56	2-3 leaf
6. Belay 2.13 SC		4.5	PF
7. Belay 2.13 SC		4.5	1-2 leaf
8. Belay 2.13 SC		4.5	2-3 leaf
9. Belay 2.13 SC		5.5	5-6 leaf
10. Mustang	0.05	4.3	2-3 leaf
11. Mustang	0.05	4.3	PF
12. Bacillus thuringiensis spp galleriae		4 lbs.	PF
13. Bacillus thuringiensis spp galleriae		4 lbs.	1-2 leaf
14. Declare	0.02	2.05	2-3 leaf
15. Coragen	0.08	6.1	PF
16. Coragen	0.1	7.7	PF
17. Coragen	0.12	9.2	PF
18. Coragen	0.12	9.2	5-6 leaf
19. A9382; A9459; A12050			seed treatment
20. A17469			seed treatment
21. A17469; A17960			seed treatment
22. A17469			seed treatment
23. A17960			seed treatment
24. A17469; A17960			seed treatment
25. A9382; A9459; A12050; STP15201			seed treatment
26. A9382; A9459; A12050; STP22245			seed treatment

at seeding to 3-leaf stage – rice water weevil

RWW management – "insecticides"

at seeding to 3-leaf stage – rice water weevil

at seeding to 3-leaf stage — rice water weevil

RWW management – "insecticides"

- Belay[®]
 - registered Fall 2013
 - optimal timing is post-flood ~2 leaf stage
- Coragen[®]
 - pursuing Special Local Needs (24c) label
 - could potentially be approved in time for 2015 season rather than in 2016 as currently projected
 - registered in southern U.S. rice as a seed treatment
 - in CA would be used preflood

at seeding to 3-leaf stage – rice water weevil

RWW management – "insecticides"

- greenhouse biological insecticide study
- Bacillus thuringiensis spp galleriae

"The Btg granular formulation (Phy-4-12) performed as well as the leading pyrethroid (lambda-cyhalothrin) in use in California in our greenhouse and field trials."

at seeding to 3leaf stage – rice water weevil

July to August - armyworms

<u>at seeding</u> midge, tadpole shrimp, crayfish

Panicle emergence
to grain fill – stink
bugs

Stink Bugs - Why so many problems?

- most are difficult to kill with insecticides
- using more selective products
- not easily exposed to insecticides as they hide
- most wide host range
- more riparian habitats, weedy areas
- move indoors for winter
- crawl into tight spaces perfect for "hitchhiking"
- global travel

- Rice Stink Bug important pest of rice in southern U.S.
- not in California

Panicle emergence to grain fill – stink bugs

- reports from one rice production area in Sacramento Valley of some pecky rice
 - low level but consistently seen
 - we searched for insect-related cause
 - found few Redshouldered stink bugs
 - one report from Mississippi of this species feeding on rice
 - also reported in a 1965 publication as injuring rice in 1939

Redshouldered stink bugs

- pest of tomatoes and other crops
- prefers grasses
- becoming more common and appearing longer in season
- did two studies in rice in 2013 and expanded these in 2014

redshouldered stink bugs

• placed four redshouldered stink bugs in a cage over plants in milk stage and left until maturity; replaced weekly (Luis Espino)

redshouldered stink bug cage study

redshouldered stink bugs

- second study
- •placed two red-shouldered stink bugs in a cage over a panicle
 - a.) in milk stage and
 - b.) in dough stage
- •left until maturity (Godfrey)

redshouldered stink bug panicle study

redshouldered stink bug panicle study - 2014

boot, milk, and dough stage infestations

Variety	% Grain Loss	% Pecky Rice
M-202	32-60	1.4 – 2.8
M-206	16-20	0.7 - 4.9
Calmochi-101	11-23	1.4 – 5.2
Calhikari-202	0-44	2.8 - 3.6
S-102	20-53	2.0 – 3.1
L-206	2-59	0 – 5.3

redshouldered stink bug panicle study - 2014

- also looked at consperse stink bug and southern green stink bug would they damage rice
- > they did as well

- Surveyed 49 rice fields in Sacramento Valley rice for stink bugs in Sept.
- Fields with higher stink bug numbers
 - weedy fields (grassy weeds)
 - fields near riparian habitat
 - fields in areas with more crop diversity (row crops)
- nightshade and wild tomatillos
- Johnson grass and sprangletop

	Fields	Positive
Butte	9	4
Colusa	10	4
Glenn	10	1
Sutter	10	3
Yolo	5	3
Yuba	5	0

Mostly red-shouldered stink bug

redshouldered stink bugs

- Brown marmorated stink bug (BMSB)
- had to do work in Contained Research Facility

colony of BMSB in quarantine

Brown Marmorated Stink Bug

- Brown marmorated stink bug (BMSB)
- did reproduce on rice
- could not look at yield and panicle/kernel damage
- will examine kernel damage in laboratory study
- starting a colony in laboratory

- Brown marmorated stink bug (BMSB)
- Specialty rice from North Carolina coastal area
- Few hundred acres grown by Hmong farmers
- Significant damage
- Damage similar to rice stink bug

Cultural Controls

well-adapted varieties

weed management on levees

planting dates

Biological Control

Parasitoids for armyworms, rice leafminer

Predators that feed on mosquito larvae

Regulatory Controls

Actions by state and federal agencies to keep pests out of California

Host Plant Resistance

Not well-developed

Pheromones

None

Insecticides