Nutrient management in California rice systems

Bruce Linquist January 19 and 20, 2016

CALIFORNIA

Natural Resources

Get DDF Reader

Outline

- Rice Yield Contest and winners
- Website
- Salinity
- Topdress N

Yield Contest

- 2015 Pilot study Butte County
- 5 field entries
- Yields ranged from 108 to 127 cwt/ac
 - Minimum of 3 ac from a 10 ac plot
 - 14% moisture plus dockage
- 2-3 hours (without recheck)

2015 Rice Yield Contest winners

RICE YIELD CONTEST

- Joe Richter (Richter Ag, Inc)
 - 126.9 cwt/ac
 - M205

- Rodney Jenkins
 - 113.0 cwt/ac
 - M206

2015 Rice Yield Contest: what did we learn?

- The varieties available have very good yield potential
- Yield and quality
 - Head/total
 - 1st 66/73 (M205)
 - 2nd 65/69 (M206)
- High yields were achieved with solid management practices
 - Total N applied across fields ranged from 162-180
- Learned enough to try again

Rice Yield Contest

• Rice Vield Contest Rules 2015

• Yield Contest Entry form 2015

Yield Contest Harvest form 2015

Berkeley

UCRIVERSIDE

Division of Agriculture Natural Resources

Get DDF Reader

Contact us • Rice Events Calendar • Photograp by Sources

© 2016 Regents of the University of California

CALIFORNIA

Why a 'super El Niño' could still.

- · Army worms invade rice: Army worm feeding can cause the panicle to turn white and
- · Debido a la seguía declina la producción de arroz (Long-term drought causing rice production decline)
- · Rice disease-resistance discovery closes the loop for scientific

2016 Rice Yield Contest

Go to web site to find rules

University of California Rice On-line
University of California

Welcome

gronomy Reséarch & Information Center

University of California Rice On-line is an interdisciplinary team consisting of UC Cooperative Extension specialists, faculty and farm advisors dedicated to providing rice growers with up-to-date guidelines and information on rice production

Agronomy Research and Information Center (RIC)

http://agric.ucdavis.edu/

Get PDF Reader

http://rice.ucanr.edu/

- Website overview
 - Meetings, news,
 newsletters, blogs,
 presentations, reports,
 contacts, yield contest
 - Place for comments
 - Guidelines,

UNIVERSITY OF CALIFORNIA

Division of Agriculture and Natural Resources Site Infor

© 2016 Regents of the University of California Nondiscrimination Statement

Variety yield comparison

- Click on a dot to get yields of main varieties over past 5 years
 - Data from UCCE variety trials funded by RRB

Degree day calculator

- Estimates date of
 - P
 - Heading
 - R7 (roughly 3 weeks after heading and when draining the field should be considered.
- Estimates these times using a DD model
 - Planting to current date based on current year data
 - Forward projection based on average weather data from current date onwards
- Info required
 - A weather station
 - Variety
 - Planting date

Division of Agriculture

Natural Resources

CALIFORNIA

© 2016 Regents of the University of Californi

Degree Day model to predict key growth stages

Degree Day model to predict key growth stages

Phosphorus management

 Deciding the correct rate

How to apply

Phosphorus management: rate

- Should you apply?
- Frequency of P deficiencies
 - Less than 10% of CA rice soils respond significantly to added P fertilizer.
- Determining the P status of your soil.
 - Soil test
 - Plant tissue test
 - Input-output P budget
- How much do should you apply?

Determining the P status of your soil

- Soil test
 - Olsen P test (sodium-bicarbonate)
 - above 6-9 ppm
 - Bray test not good for CA rice soils
- Plant tissue test
 - Y-leaf tissue test.
 - 35 DAS
 - 0.2% P
- Input-output P budget

Input-output P budget: Think of soil as a phosphorus bank

• When managed correctly, P is relatively immobile

Phosphorus

in soils.

No gas losses

- Little is lost through water
- Little lost by leaching
- Inputs
 - Fertilizer
- Outputs
 - Grain removal (0.23% P / 0.52% P_2O_5)
 - Straw removal (0.08% P / 0.18% P_2O_5)

Input-output P budget

- Develop a budget
 - Inputs (lb/ac of P2O5 as fertilizer) Outputs (lb/ac removed in grain and straw)
 - Develop such a budget over at least a 5 yr period
 - take average

P budget effects on soil P and yield response

Should you apply?

- Soils have very high P levels based on soil test (i.e. above 20 ppm) and positive P budget
 - Apply no P
- Soils have very low P (less than 6) and a negative P budget
 - Build up soil P
- In most cases where P is not limiting use a maintenance strategy
 - Apply what is removed by the crop
 - How much is removed?

Amount of P removed:

Only grain removed

Grain	P fertilizer added (lb P ₂ O ₅ /ac)														
yield (cwt@14%)	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70
	P balance (lb P ₂ O ₅ /ac)														
50	-26	-21	-16	-11	-6	-1	4	9	14	10	24	20	24	20	ЛЛ
55	-29	-24	-19	-14	-9	-4	1	6	11	Ma	int	ena	anc	e li	ne
60	-31	-26	-21	-16	-11	-6	-1	4	9	14	19	24	29	34	39
65	-34	-29	-24	-19	-14	-9	-4	1	6	11	16	21	26	31	36
70	-37	-32	-27	-22	-17	-12	-7	-2	3	8	13	18	23	28	33
75	-39	-34	-29	-24	-19	-14	-9	-4	1	6	11	16	21	26	31
80	-42	-37	-32	-27	-22	-17	-12	-7	-2	3	8	13	18	23	28
85	-44	-39	-34	-29	-24	-19	-14	-9	-4	1	6	11	16	21	26
90	-47	-42	-37	-32	-27	-22	-17	-12	-7	-2	3	8	13	18	23
95	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20
100	-52	-47	-42	-37	-32	-27	-22	-17	-12	-7	-2	3	8	13	18
105	-55	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15
110	-57	-52	-47	-42	-37	-32	-27	-22	-17	-12	-7	-2	3	8	13

How much to apply:

Remove grain and ½ of straw

Grain yield	P fertilizer added (lb P ₂ O ₅ /ac)														
(cwt@14%)	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70
	P balance (lb P ₂ O ₅ /ac)														
50	-31	-26	-21	-16	-11	-6	-1	4	9	1/1	10	2/1	20	2/1	30
55	-34	-29	-24	-19	-14	-9	-4	1	6	Ma	int	ena	anc	e lii	ne
60	-37	-32	-27	-22	-17	-12	-7	-2	3	8	13	18	23	۷8	33
65	-40	-35	-30	-25	-20	-15	-10	-5	2	5	10	15	20	25	30
70	-43	-38	-33	-28	-23	-18	-13	-8	-3	2	1	12	17	22	27
75	-46	-41	-36	-31	-26	-21	-16	-11	-6	-1	4	9	14	19	24
80	-49	-44	-39	-34	-29	-24	-19	-14	-9	-4	1	6	11	16	21
85	-52	-47	-42	-37	-32	-27	-22	-17	-12	-7	-2	3	8	13	18
90	-55	-50	-45	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15
95	-58	-53	-48	-43	-38	-33	-28	-23	-18	-13	-8	-3	2	7	12
100	-61	-56	-51	-46	-41	-36	-31	-26	-21	-16	-11	-6	-1	4	9
105	-64	-59	-54	-49	-44	-39	-34	-29	-24	-19	-14	-9	-4	1	6
110	-67	-62	-57	-52	-47	-42	-37	-32	-27	-22	-17	-12	-7	-2	3

Salinity and water management

Seasonal rice field water losses

Total water input = 77"

No-spill water management

- Maintenance flow management
 - Minimize salinity
 - Maintain water levels
- No-spill
 - Does salinity increase due to evapo-concentration?
 - If so, enough to reduce crop yield?

2014/15 salinity studies

- Evaluate flood water and soil salinity across fields and season.
 - Quantify changes in time and location in field
- Quantify the effect of soil salinity on rice yields

Methods: quantifying infield salinity dynamics

- 6 fields in 2014
- 5 fields in 2015
- 9 plots in each field. 3 in top, middle and bottom checks.
- 9 Fields were no-spill, 2 fields had flow.
 - Weekly water salinity measurements were made in all plots in all fields.
 - Soil solution was extracted from 3 points in each field: A1, B2,C3.

Flood water salinity through the growing season: averaged across fields and years

- Flood water salinity highest in bottom check
- Flood water salinity peaks between 2 and 6 weeks after planting
 - Water holds
 - High evaporation
- Flood water salinity declines after 6 weeks
 - Cool water/low evaporation

Quantifying salinity

Flood water salinity versus the distance from the inlet

Water EC is related to distance from the inlet

- Salinity increases with distance from inlet
- Water salinity doubles with a 3000 ft run

Yield vs. water or soil salinity (dS/m2)

Sterility symptoms seen in high salinity treatments

Summary

- In most fields, salinity is not a problem
 - Salinity builds up during the first month and then declines
 - Need to be mindful of the amount of salinity but also the duration of high salinity
 - Season long salinity is not a problem in most fields
 - Flood water salinity seems more important than soil salinity
 - At least once crop has established
 - Observation: If salinity is a problem, may not want to drain too early for harvest

Top-dress N applications: guidelines

- Do not plan for a top-dress N application
- At equal amounts of N, there is no benefit of splitting the N between a preplant and top-dress.
- Apply enough preplant N (aqua and starter) for an average year
- A top-dress may be necessary
 - N losses (i.e. due to early season drain)
 - High yield potential year

Top-dress N applications: Is it necessary?

- Leaf-color chart
- SPAD meter
- We are evaluating the potential for using aerial imagery
 - NDVI is not a great indicator of
 - N concentration
 - Biomass
 - NDVI may be promising for estimating total N (N conc X biomass)

Preliminary results: NDVI at PI

- Not good at estimating biomass and N concentration
- Good correlation with N uptake

N uptake at PI versus yield

SINCE

- NDVI is a good predictor of PI N uptake AND
- PI N uptake is good at predicting final yield

THEN

We see potential in using the NDVI index to inform on midseason N management decisions.

Top-dress N applications: 2016 research

- Continue with 2015 research
 - Can we use aerial imagery to accurately access crop N status?
 - Experimental plots
 - Effects across N rates and when is a top-dress nessesary
 - Large field trials

Top-dress N applications: Field trials

• 3 treatments (one per check)

standard preplant Nrate with no top-dress

standard preplant Nrate with top-dress

increased preplant Nrate with no top-dress

Preplant (aqua +starter)	Top-dress
150	0
150	30
180	0

Top-dress N applications: Field trials

- 3 treatments (one per check)
 - standard preplant N rate with no top-dress
 - standard preplant N rate with top-dress
 - increased preplant N rate with no top-dress
- Run by growers
 - Application of rates
 - Yields from combines with yield monitors
- At time of top-dress
 - Measurements: biomass, NDVI from all treatment plots
- Sign up in back if you may be interested

