Agronomic impacts on rice milling quality

Bruce Linquist July 18, 2024

Topics

- Focus on milling quality
- Variety (Dustin covered)
- Preparing the seedbed
- Planting: establishment and seed rate
- N management
- Water management and field drainage
- Harvesting considerations

What's the goal of agronomic management?

- <u>Broad goal</u>: By harvest, rice that is
 - high yielding,
 - standing,
 - has as uniform a grain moisture as possible.

Milling Quality and Yield

- Milling quality not associated with yield
- High quality possible with good yields
- Head rice yield varied between variety and grain moisture

Field Preparation

- Well leveled and graded fields lead to:
 - Increased ease of flooding and draining fields
 - Uniform water depth encourages uniform crop development and grain ripening
 - Helps field drain uniformly at end of season allowing for uniform ripening.
 - Reduces weed competition
- High areas lead to weeds and may dry out earlier
- Low spots are wet longer and may delay grain drying
- New fields with cut and fill areas create variability.

Planting

- Planting date
 - Match planting schedule with harvest capacity
 - Consider effects of very early or late plantings
- Seeding rate and distribution
 - Optimal plant density
 - Low plant density contributes to a lot of tillering
 - Variation in panicle maturity
 - Both high and low plant density can contribute to lodging
 - Lodging reduces quality due to inability to dry down uniformly and mold development
 - Ideal-25-50 plants per ft². Will lead to 2-3 tillers per plant
 - Encourage uniform emergence and early development.
 - Variation in water depth affects early plant development
 - In dry seeded fields, an initial flush of water will help ensure uniformity
 - Uniform distribution of plants
 - In windy areas, use Leather's Method to ensure a uniform stand

Nitrogen management

- Nitrogen: strong influence on developmental rate and grain ripening.
 - Too much N
 - delays ripening
 - Increase incidence of diseases that affect quality (i.e. smut)
 - Increases chance of lodging
 - Stimulate later tiller production causing more immature grains at harvest.
 - Field variability in terms of N will cause variability across the field in grain ripening.
 - Field position
 - Cut/fill areas
 - Headlands
 - Cover crops
 - Variation in flooding

End of season water management

- Want fields to drain and dry uniformly
- Timing
 - Too late
 - Soil may be to wet to support equipment when the grain is ready to harvest
 - Increase potential to lodge
 - Potential increase in pest and disease damage
 - Too early
 - Incomplete grain filling (small or misshapen grain)
 - Loss of yield
 - Variety dependent
 - Some varieties ripen quicker
 - Reports of M-211 needing water a bit longer
 - Actual timing of the drain will be field (soil characteristics) and variety dependent

Manage water to reduce field variability

- Depending on how water drains from a field (or how a field dries out), there can be a lot of variability.
- Grain moisture in field to left varied across check by over 10% across basins
- Understanding field conditions can help reduce this variability.
- In field ditches or multiple drains

Grain dry down

- Early drain initiates drying faster and may lead to lower yields
- Rate of dry down is similar
- Actual rate will depend on year.
- In case to the left, drop 6% required about 1 week.

Harvesting at the right time

- Want to harvest at optimal moisture
 - Too high: odor and high drying costs
 - Too low: low head rice
 - Varies by variety
 - Generally for medium grains 18-21% is optimal
 - Below this head rice can drop quickly for certain varieties (i.e. M-209 and M-211)
- Optimal grain moisture is when grain <u>first</u> reaches desired moisture
- Challenges

Grain moisture varies on a panicle

- On a given panicle grains develop at different times
- A single plant has a number of panicles. The primary panicle is first to develop and the others follow
 - On a given plant with multiple tillers, flowering takes place over a period of 7 days
- Given this, grains mature at different times.
- Grain moisture is the average of a wide range of moisture contents from grain all over a plant and field.
 - While good management reduces variation, there will always be some

Day 1 2 3

Environmental affects on grain moisture and head rice yield

- Want to harvest when grain <u>first</u> reaches optimal moisture
- Ideal: weather conditions that uniformly dry the rice down at a constant rate
- Reality: weather patterns cause large variations in how grains dry down
 - Dry north winds cause rapid reduction in moisture.
 - Drop a couple percentage points in one day.
 - Cool nights with dew rehydrate grains
 - cause fissuring in the grain

Using desiccants to accelerate dry down

- Desiccants may be necessary if it is rice can not drop to proper moisture content for harvest.
 - Low temperature, rain
- Sodium chlorate is a registered desiccant
- Used rarely and not much research in CA
- General guidelines from the southern US for long grains
 - Do not apply when rice is above 25% moisture due to reducing milling quality
 - Do not apply earlier than 35-40 days after heading
 - Apply only on acres that can be harvested within 3-5 days after application
 - Want to prevent rehydration
 - Does not affect seed germination if used on seed field and within the above stated guidelines.

Summary

- Broad goal: By harvest, rice that is
 - high yielding,
 - standing,
 - has as uniform a grain moisture as possible.
- Agronomic practices to achieve this start at field preparation and go right through to deciding when to harvest.
- Agronomic practices should strive to achieve uniformity across a field
 - Water
 - Plant distribution
 - Fertility
 - Soil moisture during drying

Thankyou

-

16