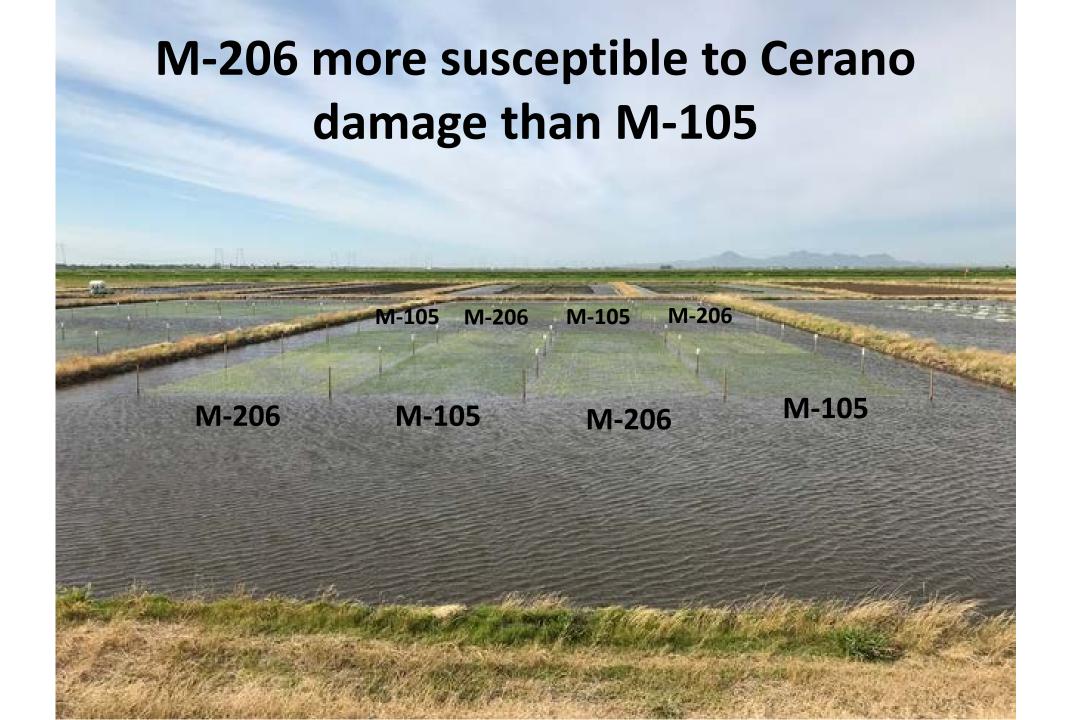

Determining need for top-dress N application: Response Index

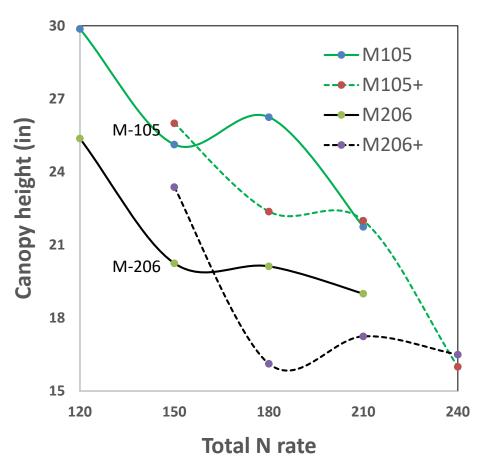
- Ratio of High N strip to test area
 - = NDVI High N / NDVI test
 - For example:

 Response index to apply: depends.....



Should I apply a top-dress?

Lodging: M-105 vs M-206


- M-105
 - is earlier than M-206
 - Slightly higher yield potential
 - BUT is susceptible to lodging
 - Slowing harvest operations and possibly impacting quality
- In 2020 we have a trail to quantify lodging and to see if N management may play a role.
 - Testing if splitting N may help reduce lodging while providing similar yields.
- Treatments are 4 preplant N rates (120, 150, 180 and 210 lb N/ac)
 with and without a top-dress N (30 lb N/ac)

Plant response to N management

- Yield: no difference
 - Tended to decrease with increasing N rate
- Lodging
 - M-206 lodged more across N rates than M-105
 - Applying all of the N at planting did not increase yields relative to split applications.
 - Top-dressing sometimes resulted in more lodging at comparable total N rates.
- Plant height
 - M-206 taller than M-105 (0.5" to 1.5")
 - Preplant fertilizer increased plant height (2")
 - Top-dressing increased plant height (0.5")

Lodging vs N management

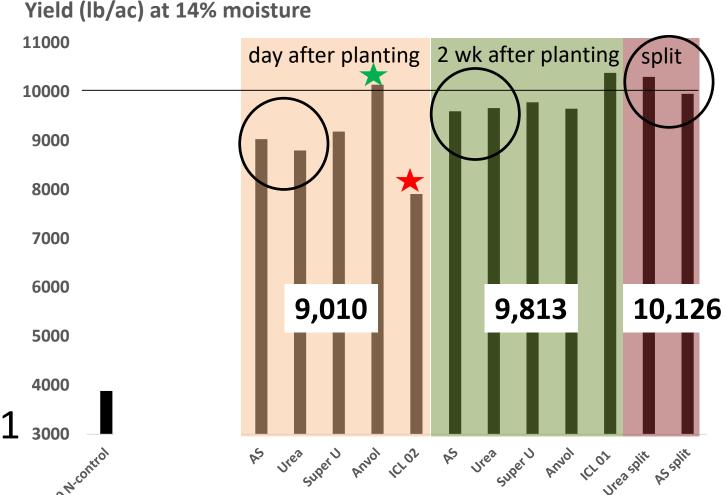
Comparison of granular N sources: when can not be applied before flooding

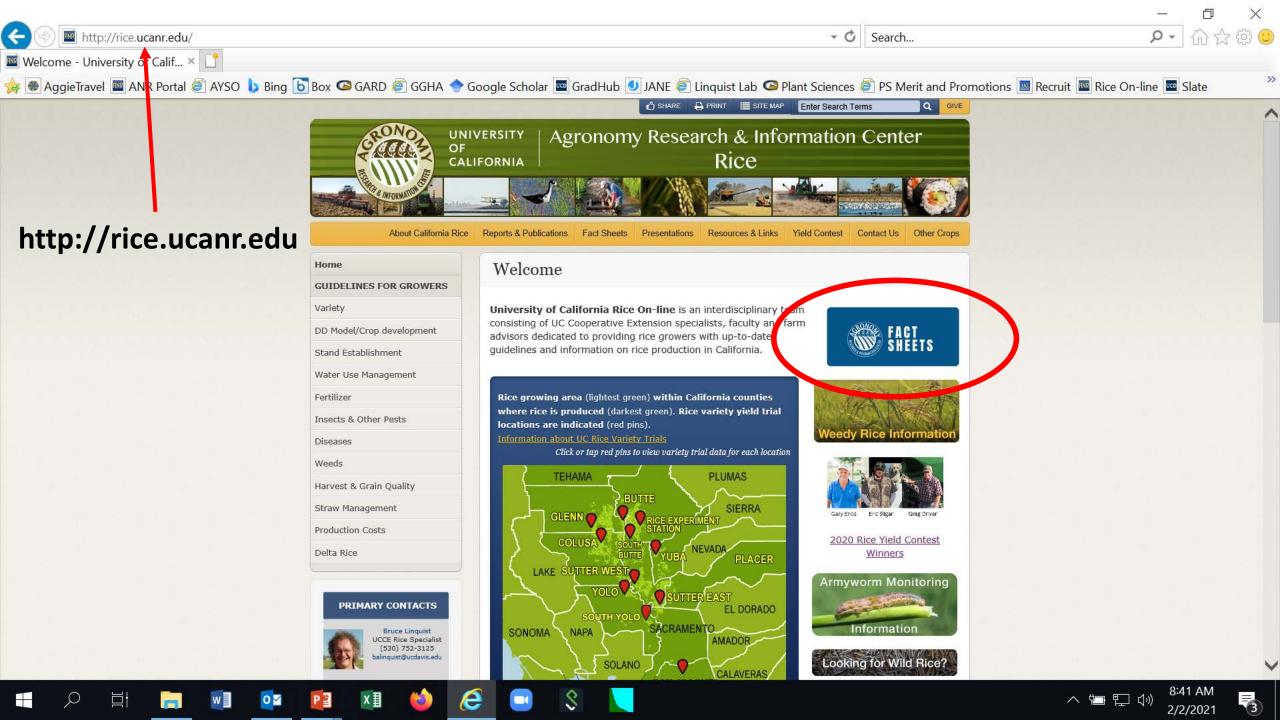
• Treatments:

- AS, urea, and enhanced efficiency fertilizers applied same day as planting
- AS, urea, and enhanced efficiency fertilizers 2 weeks after planting
- AS and urea split application 2, 4, 6, 8 weeks after planting (20:30:30:20 split)
- Control-no N fertilizer
- Enhanced efficiency fertilizers
 - Super U (urease and nitrification inhibitor) (Koch Agronomics)
 - Anvol (urease inhibitor) (Koch Agronomics)
 - Coated urea (delay availability) (Agrocote-ICL)
- All applied at a rate of 135 lb N/ac

2020 yield results

At planting<2wk< Split


• AS = Urea


 A couple of enhanced efficiency fertilizers showed promise:

Anvol

- ICL

Repeating study in 2021 3000

Agronomy Fact Sheet

Fact Sheet #1

Nutrients in Rice Grain and Straw at Harvest

Agronomy Fact Sheet

Background

Knowing the amount of nut harvest time is important fo

- It provides an idea of needs. Some of these r routinely in fertilizer appl are readily available from water.
- It helps us understand I soil nutrient balances. Grai it) are removed from the straw may or may not be not be
- The nutrient composimplications for how it can

Nutrient Concentration

Table 1 provides the nutri grain and straw at harvest, th

Table 1. Nutrient concentration amount of nutrient in a ton of Fairhurst. 2000).

Fairhurst, 2000).		
Nutrient	Concent	
	%	
Nitrogen	1.3	
Phosphorus*	0.3	
Potassium*	0.2	
Calcium	0.0	
Magnesium	0.1	
Sulfur	0.:	
Silicon	2	
Zinc	0.0	
Iron	0.02	
Manganese	0.0	
Copper	0.0	
Boron	0.0	

* To convert P to P₂O₅ multipl

University of California

university of California Agronomy Research & Information Center

Optimal and Critical Nutrient Concentrations in Rice Tissue

Background

Nutrient deficiencies or toxicities can b determine visually. Knowing the concentration in the plant can greatly

Table 1. Optimal, critical and excessive of initiation - PI). Data source (Dobermann and

-	Growth	•
Element	stage	Plant pa
Nitrogen*	Tillering-PI	Y-leaf
	Flowering	Flag-leaf
	Maturity	Straw
Phosphorus	Tillering-PI	Y-leaf
	Flowering	Flag-leaf
	Maturity	Straw
Potassium	Tillering-PI	Y-leaf
	Flowering	Flag-leaf
	Maturity	Straw
Zinc	Tillering-PI	Y-leaf
	Tillering	Shoot
Sulfur	Tillering	Y-leaf
	Tillering	Shoot
	Flowering	Flag-leaf
	Flowering	Shoot
	Maturity	Straw
Silica	Tillering	Y-leaf
	Maturity	Straw
Magnesium	Tillering-PI	Y-leaf
	Tillering-PI	Shoot
	Maturity	Straw
Calcium	Tillering	Y-leaf
	Tillering-PI	Shoot
	Maturity	Straw
Iron	Tillering	Y-leaf
	Tillering	Shoot
Manganese	Tillering	Y-leaf
	Tillering	Shoot
Copper	Tillering	Y-leaf
	Maturity	Straw
Boron	Tillering	Y-leaf
	Maturity	Straw
Aluminum	Tillering	Shoot

University of California

UNIVERSITY OF CALIFORNIA

Agronomy Research & Information Center

Fact Sheet #9

Agronomy Fact Sheet

Fact Sheet #2

Managing Potassium in Rice Fields

Why is it important?

Potassium (K) is an essential nutrient for rice. It is important to have good K fertility not only for optimizing yields, but also K helps reduce the severity of some common plant diseases that we see (e.g. aggregate sheath spot and stem rot).

Deficiency Symptoms

K deficiency symptoms include (1) yellow/brown leaf margins, (2) dark brown spots on leaf surface, and (3) leaf bronzing (Figure 1).

Figure 1. Potassium deficiency symptoms. Yellow leaf margins and bronzing (top); brown spots (bottom). Source: top - IRRI (Rice Knowledge Bank), bottom - Agrax

University of California

UNIVERSITY OF CALIFORNIA

Agronomy Research & Information Center

Agronomy Fact Sheet

Fact Sheet #7

Managing Phosphorus in California Rice Fields

Fact Sheets

Why is it Important?

Phosphorus (P) is the second most commonly applied fertilizer to rice (nitrogen is the first). Plants use P for membrane integrity, energy storage and phloem transport. Phosphorus deficiencies are not common in California as many farmers apply P fertilizer (on average, 40-45 lb P₂O₃/ac). However, in a recent study, we found 10% of fields tested to be deficient. With farmers achieving higher yields, deficiencies may become more common unless P fertilizer rates are increased.

Deficiency Symptoms & Critical Levels

Deficiency symptoms often diminish with time but include: Stunted dark green plants, narrow leaves, reduced tillering, and delayed flowering.

Figure 1. Phosphorus deficiency symptoms showing narrow dark green leaves.

The Olsen-P soil test (sodium-bicarbonate) is the best test for identifying P-deficient rice soils in California. The Bray test does not work as well. An Olsen P value above 6-9 ppm is indicative of a soil that is not P deficient.

For plant tissue, if the Y-leaf P concentration at 35

Soil Phosphorus Budgets

A P budget accounting for all of the P fertilizer added and removed in grain or straw over the past five years also provides a good indicator of soil P status. If more P has been removed from the soil than has been applied, it is likely the soil P status is low (Table 1). Importantly, at harvest, about 70% of the P in the plant is in the grain; therefore, P removal in grain is the major pathway that P is removed from the system. Very little P is lost via leaching or in the tailwater drain. Given that these losses are low, it is possible to build up P in the soil.

The Four Rs of P Fertilizer Management

Right rate: First ask, should you apply? If your soil test levels are high (>15 ppm Olsen P), you probably do not need to apply any P fertilizer. If soil P levels are between 6 and 15 ppm Olsen P, apply the maintenance application rate. If Olsen P levels are below 6 ppm consider build-up application rates (rates higher than maintenance). To calculate the maintenance application rate you can go to "rice.ucarr.edu/P_Budget_calculator/". However, Table 1 provides general guidelines that will give you a rough estimate based on your expected yields and straw management.

Right time: Phosphorus fertilizer can be applied anytime from before flooding to about 30 DAS for optimal yield response. Applying P before planting can lead to algae (scum) build up in the water and lead to poor stand establishment (Fig.

